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The CRISPR-Cas9 system is a highly promising and versatile platform for
genome editing with significant potential for gene therapy. It employs locus-

specific nucleases, guided by programmable RNAs, to cleave target DNA sites

Keywords: and introduce double-strand breaks, thereby enabling precise genome
CRISPR-Cas9, genome editing, modification through endogenous DNA repair mechanisms. This review aims
inherited bl'oo.d disorders, to elucidate the relationship between CRISPR-Cas9 technology and inherited
haematopoietic stem cells, gene blood disorders, and to highlight the most important evidence-based
therapy . . . .

recommendations for the diagnosis and effective management of these
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INTRODUCTION them from oxidative damage, as well as abnormalities of
Inherited blood disorders encompass conditions affecting  erythrocyte membrane proteins. The most common
hemoglobin synthesis and structure, deficiencies in  inherited blood diseases include coagulation factor
enzymes that provide energy to red blood cells or protect deficiencies, hemophilia, platelet disorders, sickle cell
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anemia, thalassemia, thrombophilia, and von Willebrand
disease. According to the World Health Organization
(2006),
continue to create major challenges for health systems,

hemolytic anemias and hemoglobinopathies
particularly due to viral infections and limited access to

specialized care.

Recent epidemiological data indicate that inherited red
blood cell diseases remain widespread worldwide, with
stable or increasing prevalence driven by population
migration, growth, and socio-economic factors (Mattiuzzi &
Lippi, 2020; Wendt et al., 2023). Despite improvements in
diagnostics, effective therapy remains a challenge (Shi et al.,
2025).

Inherited hemoglobin disorders are a significant
component of the global burden of rare diseases.
Hemoglobin mutation variants affect approximately 7% of
the global population, with around 300,000-500,000 babies
born annually with severe hemoglobinopathies (De Sanctis
et al., 2023). Management options vary considerably across
countries, highlighting the urgent need for effective and

accessible disease-modifying therapies.

Current treatments, including chronic transfusions, iron

chelation, allogeneic stem cell
(HSCT),

temporary disease control but are limited by donor

hematopoietic

transplantation and hydroxyurea, provide

availability, immune complications, and financial
constraints (Khan et al., 2025). While genome editing of
hematopoietic stem and progenitor cells (HSPCs) offers
therapeutic potential, challenges remain in applying this
therapy safely. CRISPR-Cas9/AAV6-mediated editing has
been associated with side effects such as cellular senescence
and genotoxic inflammation, raising questions about long-

term safety (Conti et al., 2025).

Figure 1:
Applications of CRISPR/Cas9 technology in hematology research and human
therapy
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The CRISPR-Cas9 system shows promise as an ideal
therapeutic strategy for congenital hematological diseases.
This system allows precise reconstruction, disruption, or
introduction of genes in HSPCs for therapeutic purposes
without disrupting normal cell function. This review
discusses the introduction, challenges, and future prospects
of CRISPR-Cas9 in treating congenital hematological
disorders, including sickle cell disease (SCD), p-
thalassemia, and hemophilia (Chehelgerdi et al., 2024;
Schiroli et al., 2019; Xiao et al., 2024).

METHODS

This review synthesises current literature on genome
editing using the CRISPR-Cas9 system for the treatment of
hereditary blood disorders. Searches covered publications
between 2019 and 2025 in PubMed, PMC, ScienceDirect,
Frontiers in Genome Editing, OJRD, AM] Medicine, and
Google Books.

Inclusion criteria
Validated
systematic reviews, and narrative literature describing

scientific studies (clinical or preclinical),
CRISPR or genome editing for hereditary haematological

disorders.

Exclusion criteria

Studies not published in English and those lacking
relevance to haematological diseases.
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Evidence base

Peer-reviewed literature, open-access journal articles,
clinical trial reports, and publicly accessible scientific
studies.

Data synthesis

A narrative thematic approach was employed, organised
around epidemiology, current therapies, CRISPR-Cas9
applications, delivery technologies, and future directions.

OVERVIEW AND MECHANISM OF CRISPR-Cas9

CRISPR was first identified as a bacterial adaptive immune
system. The Cas9 nuclease, guided by mature guide RNA
(gRNA) and trans-activating crRNA sequences, introduces
precise double-strand breaks (DSBs) at targeted genomic
sites (Lu et al., 2022). CRISPR-Cas9 has since been adapted
for genome modification in mammalian cells by
engineering sequence-specific crRNAs and complementary
palindromic repeats (Lu et al., 2022). The system has been
successfully applied to modify diverse cell types ex vivo
and across multiple in vivo models, including mice, fish,

monkeys, and pigs (Chehelgerdi et al., 2024).

A modified CRISPR-dCas9 platform blocks transcriptional
elongation or releases transcriptional repression without
inducing DSBs (Qi et al.,, 2013). Repressor or activator
domains, such as KRAB or VP64, can be fused to dCas9,
enabling gene silencing or activation. These tools have
facilitated up to ~1000-fold increases in endogenous gene
expression, offering insights into
relationships (Gilbert et al., 2014).

gene-function

Earlier genome-editing platforms—including zinc-finger
(ZFNs),
nucleases (TALENs), and meganucleases—represented

nucleases transcription-activator-like effector
significant technological progress but were limited by low
specificity, design complexity, and reduced targeting
efficiency (Lu et al., 2022; Lu, Happi Mbakam, Song, &
Tremblay, 2022). CRISPR-Cas9 has therefore emerged as a

more flexible and efficient alternative.

DELIVERY SYSTEMS

Types of CRISPR-Cas9 delivery formats

CRISPR-Cas9 may be delivered as plasmid DNA encoding
Cas9 and sgRNA, as mRNA with sgRNA, or as
ribonucleoprotein (RNP) complexes. Plasmid formats offer
stability but face challenges such as nuclear entry, slower

expression kinetics, and increased off-target activity.
(Behrouzian Fard et al., 2025). Chemically modified mRNA
enhances stability and translation efficiency. RNP delivery,
which introduces Cas9 protein and sgRNA directly, is
considered the most precise and transient option (Sioson et
al., 2021; Igbal et al, 2023).

CONSIDERATIONS IN LOADING AND
DISTRIBUTION

The large molecular size of plasmids, RNA molecules, and
Cas9 protein requires efficient loading strategies. Physical
delivery methods allow direct membrane penetration but
can compromise cell viability. Viral vectors— particularly
AAV —have limited cargo capacity (<4 kb), which restricts
the delivery of larger plasmids (Front Med, 2021; ]
Nanobiotech, 2024). Delivery modes include physical, viral,
and non-viral strategies, each with advantages and
limitations (Front Chem, 2022, 2023; ] Nanobiotech, 2022).

Table 1:
Some of the common strategies for administering CRISPR/Cas9, their advantages, and
limitations

Types of Delivery Delivery Advantages Limitations Applications
delivery  Strategies formats
Physical MJcrumJectm.n DNA; Dosage Technical In vitro;
= _ Electroportation MRNA controllable; PP
delivery 3 . limitation: In ia
HTV1 Protein Direct - _ In vivo
methods N . vifro only:
DY, Dl e
Protein restriction e LA
DNA; Easy to operate: Invitroonly: ) yive
Protein Low price Affects cell
viability
Traumatic to
tissue; Low
specificity
. AAV DNA Minimal Limited .
Viral - . N In vivo
P CCIuE AV DNA Immunogenicity capacity .
delivery LV DNA Large capacity:; High In vivo
methods High deliver immunogenici
efficiency ty; Difficult
Large packaging  scale
capacity: production
Persistent gene Insertional
transfer mutation;
Long-lasting
expressionof o o
Cas9
Non- LNPs ) mRNA Easy to operate; Spec_iﬂc cell T
viral Polymeric Protein Low cost; tropism; .
s nanoparticles Protein Easy to operate Variable In vivo
delivery Inorganic Protein Excellent efficiency: o
e nanocarries Protein chemical stability =~ Cytotoxicity; o
DNA Well Variable Lyl
nanostructure histocompatibility efficiency:; In vivo
Modification i vivo
of template
DNA

Source: (Liang et al., 2023)
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APPLICATIONS IN SPECIFIC DISEASES

p-Thalassaemia

B-Thalassaemia arises from mutations in the HBB gene,
leading to reduced P-globin synthesis, excess a-globin
chains, ineffective erythropoiesis, and severe anaemia
(Finotti et al., 2015; Ribeil et al., 2013). Although allogeneic
HSCT is curative for some patients, donor limitations
necessitate alternatives. CRISPR-Cas9 can correct HBB
mutations or reactivate fetal haemoglobin (HbF) by
disrupting regulatory regions such as BCL11A (Cavazzana-
Calvo et al., 2010; Finotti et al., 2015).

Sickle Cell Disease (SCD)

SCD is caused by a single-nucleotide mutation in HBB,
producing haemoglobin S (HbS). Under hypoxia, HbS
polymerises, deforming RBCs and causing vaso-occlusion,
haemolysis, anaemia, and multi-organ damage (Gewin,
2015; Hoban et al., 2016, Weatherall, 2010). CRISPR-Cas9
has demonstrated high efficiency in correcting HBB
mutations in patient-derived iPSCs (Huang et al.,, 2015;
Ugalde et al., 2023). Another promising approach targets
BCL11A to reactivate HbF, though concerns remain
regarding immune reactions to Cas9 and off-target
mutations (Fontana et al., 2025; Adashi et al., 2023).

Fanconi Anaemia

Fanconi anaemia (FA) results from mutations in genes
involved in the FA/BRCA DNA repair pathway, including
FANCA, FANCC, and FANCG. It is characterised by
genomic instability, congenital abnormalities, bone marrow
failure, and elevated cancer risk (Auerbach, 2009; Soulier,
2011; Taniguchi & D’Andrea, 2006). Correcting FA
mutations using iPSC technology has shown promise, but
efficacy is limited by low homology-directed repair (HDR)
rates and uncertain long-term safety (Rio et al., 2014; Raya
et al., 2009).

Thrombocytopenia

Thrombocytopenia refers to a decrease in platelet count
caused by inherited or acquired conditions (Drachman,
2004). Although research remains limited, CRISPR-Cas9
has successfully converted HPA-1b to HPA-1a in iPSCs,
improving  megakaryocyte  viability. = Nonetheless,
challenges persist due to poor differentiation efficiency and
off-target risks (Zhang et al., 2016).

Haemophilia

Haemophilia A and B result from deficiencies in
coagulation factors VIII and IX, respectively (Ratnoff &
Bennett, 1973). Earlier AAV-based gene therapies showed
promise (High, 2012; McIntosh et al., 2013; Nathwani et al.,
2011). CRISPR-Cas9 has been used to correct chromosomal
inversions in iPSCs derived from patients with haemophilia
A, enabling the production of functional endothelial cells
capable of secreting FVIII (Park et al., 2015). Limitations
include the complexity of F8 gene structure and potential
immune responses to Cas9.

Diamond-Blackfan Anaemia (DBA)

DBA is a rare congenital erythroid aplasia caused by
mutations in ribosomal protein genes, resulting in
ribosomal stress and TP53 activation (Dutt et al., 2011; Jaako
etal., 2011). Current treatments — including glucocorticoids
and HSCT —carry significant adverse effects (Ball, 2011;
Vlachos et al., 2001, 2008). CRISPR-Cas9 has demonstrated
potential in zebrafish models, although editing ribosomal
genes poses safety risks due to their essential functions
(Ablain et al., 2015).

CHALLENGES AND LIMITATIONS

Despite substantial progress, CRISPR-Cas9 faces major
challenges before routine clinical application. Off-target
DNA cleavage threatens genomic stability (Schiroli et al.,
2019; Xiao et al, 2024). Delivery challenges persist,
especially with viral vectors that may provoke immune
responses (Lu et al, 2022). Ethical concerns related to
germline editing and equitable access further complicate
clinical translation (De Sanctis et al., 2023). Additionally, the
long-term stability of edited HSPCs remains uncertain
(Chehelgerdi et al., 2024).

Future Prospects

CRISPR-Cas9 technology offers a highly precise method for
targeting inherited blood disorders and reactivating fetal
haemoglobin, holding promise for both ex vivo and in vivo
therapies (Chehelgerdi et al., 2024; Lu et al, 2022).
Enhancing delivery systems, reducing off-target activity,
and establishing robust long-term safety data are essential
for successful clinical translation (Schiroli et al., 2019; Xiao
et al.,, 2024). Ethical considerations, regulatory oversight,
and equitable access will shape the future of gene therapy
(De Sanctis et al., 2023; Zheng, 2025; Kolanu, 2024).
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CONCLUSION
CRISPR-Cas9 shows strong potential for precise genome
modification and correction of mutations responsible for
inherited blood disorders such as B-thalassemia and SCD
(Chehelgerdi et al., 2024; Lu et al., 2022). Promising results
have been observed in the restoration of gene function in
HSPCs and in patient-derived iPSCs (Schiroli et al., 2019;
2024).
particularly off-target effects,

Xiao et al, Significant challenges remain—
delivery Dbarriers, and
uncertainties surrounding long-term cell stability (De
Sanctis et al., 2023; Zheng, 2025). Current research focuses
on improving vectors, expanding clinical trials, and
developing strategies to minimise adverse effects (Lu et al.,

2022; Xiao et al., 2024).
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