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The CRISPR–Cas9 system is a highly promising and versatile platform for 

genome editing with significant potential for gene therapy. It employs locus-

specific nucleases, guided by programmable RNAs, to cleave target DNA sites 

and introduce double-strand breaks, thereby enabling precise genome 

modification through endogenous DNA repair mechanisms. This review aims 

to elucidate the relationship between CRISPR–Cas9 technology and inherited 

blood disorders, and to highlight the most important evidence-based 

recommendations for the diagnosis and effective management of these 

conditions. The review synthesises recent literature—including clinical trials, 

systematic reviews, and meta-analyses published between 2019 and 2022—

identified through comprehensive searches of Web of Science, PubMed, PMC, 

ScienceDirect, Frontiers in Genome Editing, OJRD, AMJ Med, and Google 

Books using terms such as CRISPR–Cas9 system and inherited blood disorders. 

Studies involving gene modification of haematopoietic cells form the 

foundation for discussing contemporary models of blood diseases. We also 

summarise the applications of gene modification in experimental, preclinical, 

and clinical haematology, including gene-function interference, target 

identification, drug discovery, and chimeric antigen receptor or T-cell receptor 

engineering. Future research should prioritise the optimisation of delivery 

systems, improvement of target specificity, and evaluation of long-term safety. 

We hope that this review will support haematology practitioners and genetic 

research specialists in deepening their understanding of the impact of CRISPR–

Cas9 on human biology and promote greater awareness across the healthcare 

system. Finally, we discuss the rapidly evolving landscape of haematology and 

the ongoing advancements in CRISPR–Cas9 technology that are poised to 

further transform the field. 
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INTRODUCTION 

Inherited blood disorders encompass conditions affecting 

hemoglobin synthesis and structure, deficiencies in 

enzymes that provide energy to red blood cells or protect  

them from oxidative damage, as well as abnormalities of 

erythrocyte membrane proteins. The most common 

inherited blood diseases include coagulation factor 

deficiencies, hemophilia, platelet disorders, sickle cell  
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anemia, thalassemia, thrombophilia, and von Willebrand 

disease. According to the World Health Organization 

(2006), hemolytic anemias and hemoglobinopathies 

continue to create major challenges for health systems, 

particularly due to viral infections and limited access to 

specialized care. 
 

Recent epidemiological data indicate that inherited red 

blood cell diseases remain widespread worldwide, with 

stable or increasing prevalence driven by population 

migration, growth, and socio-economic factors (Mattiuzzi & 

Lippi, 2020; Wendt et al., 2023). Despite improvements in 

diagnostics, effective therapy remains a challenge (Shi et al., 

2025). 
 

Inherited hemoglobin disorders are a significant 

component of the global burden of rare diseases. 

Hemoglobin mutation variants affect approximately 7% of 

the global population, with around 300,000–500,000 babies 

born annually with severe hemoglobinopathies (De Sanctis 

et al., 2023). Management options vary considerably across 

countries, highlighting the urgent need for effective and 

accessible disease-modifying therapies. 
 

Current treatments, including chronic transfusions, iron 

chelation, allogeneic hematopoietic stem cell 

transplantation (HSCT), and hydroxyurea, provide 

temporary disease control but are limited by donor 

availability, immune complications, and financial 

constraints (Khan et al., 2025). While genome editing of 

hematopoietic stem and progenitor cells (HSPCs) offers 

therapeutic potential, challenges remain in applying this 

therapy safely. CRISPR-Cas9/AAV6-mediated editing has 

been associated with side effects such as cellular senescence 

and genotoxic inflammation, raising questions about long-

term safety (Conti et al., 2025). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  

Applications of CRISPR/Cas9 technology in hematology research and human 

therapy 
 

 

Source: Gonzalez-Romero et al., 2019 

 

The CRISPR-Cas9 system shows promise as an ideal 

therapeutic strategy for congenital hematological diseases. 

This system allows precise reconstruction, disruption, or 

introduction of genes in HSPCs for therapeutic purposes 

without disrupting normal cell function. This review 

discusses the introduction, challenges, and future prospects 

of CRISPR-Cas9 in treating congenital hematological 

disorders, including sickle cell disease (SCD), β-

thalassemia, and hemophilia (Chehelgerdi et al., 2024; 

Schiroli et al., 2019; Xiao et al., 2024). 
 

METHODS 

This review synthesises current literature on genome 

editing using the CRISPR-Cas9 system for the treatment of 

hereditary blood disorders. Searches covered publications 

between 2019 and 2025 in PubMed, PMC, ScienceDirect, 

Frontiers in Genome Editing, OJRD, AMJ Medicine, and 

Google Books. 
 

Inclusion criteria 

Validated scientific studies (clinical or preclinical), 

systematic reviews, and narrative literature describing 

CRISPR or genome editing for hereditary haematological 

disorders. 
 

Exclusion criteria 

Studies not published in English and those lacking 

relevance to haematological diseases. 
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Evidence base 

Peer-reviewed literature, open-access journal articles, 

clinical trial reports, and publicly accessible scientific 

studies. 
 

Data synthesis 

A narrative thematic approach was employed, organised 

around epidemiology, current therapies, CRISPR-Cas9 

applications, delivery technologies, and future directions. 
 

OVERVIEW AND MECHANISM OF CRISPR-Cas9 

CRISPR was first identified as a bacterial adaptive immune 

system. The Cas9 nuclease, guided by mature guide RNA 

(gRNA) and trans-activating crRNA sequences, introduces 

precise double-strand breaks (DSBs) at targeted genomic 

sites (Lu et al., 2022). CRISPR-Cas9 has since been adapted 

for genome modification in mammalian cells by 

engineering sequence-specific crRNAs and complementary 

palindromic repeats (Lu et al., 2022). The system has been 

successfully applied to modify diverse cell types ex vivo 

and across multiple in vivo models, including mice, fish, 

monkeys, and pigs (Chehelgerdi et al., 2024). 
 

A modified CRISPR-dCas9 platform blocks transcriptional 

elongation or releases transcriptional repression without 

inducing DSBs (Qi et al., 2013). Repressor or activator 

domains, such as KRAB or VP64, can be fused to dCas9, 

enabling gene silencing or activation. These tools have 

facilitated up to ~1000-fold increases in endogenous gene 

expression, offering insights into gene-function 

relationships (Gilbert et al., 2014). 
 

Earlier genome-editing platforms—including zinc-finger 

nucleases (ZFNs), transcription-activator-like effector 

nucleases (TALENs), and meganucleases—represented 

significant technological progress but were limited by low 

specificity, design complexity, and reduced targeting 

efficiency (Lu et al., 2022; Lu, Happi Mbakam, Song, & 

Tremblay, 2022). CRISPR-Cas9 has therefore emerged as a 

more flexible and efficient alternative. 
 

DELIVERY SYSTEMS 
 

Types of CRISPR-Cas9 delivery formats 

CRISPR-Cas9 may be delivered as plasmid DNA encoding 

Cas9 and sgRNA, as mRNA with sgRNA, or as 

ribonucleoprotein (RNP) complexes. Plasmid formats offer 

stability but face challenges such as nuclear entry, slower 

expression kinetics, and increased off-target activity. 

(Behrouzian Fard et al., 2025). Chemically modified mRNA 

enhances stability and translation efficiency. RNP delivery, 

which introduces Cas9 protein and sgRNA directly, is 

considered the most precise and transient option (Sioson et 

al., 2021; Iqbal et al, 2023). 
 

CONSIDERATIONS IN LOADING AND 

DISTRIBUTION 

The large molecular size of plasmids, RNA molecules, and 

Cas9 protein requires efficient loading strategies. Physical 

delivery methods allow direct membrane penetration but 

can compromise cell viability. Viral vectors—particularly 

AAV—have limited cargo capacity (<4 kb), which restricts 

the delivery of larger plasmids (Front Med, 2021; J 

Nanobiotech, 2024). Delivery modes include physical, viral, 

and non-viral strategies, each with advantages and 

limitations (Front Chem, 2022, 2023; J Nanobiotech, 2022). 
 

Table 1:  

Some of the common strategies for administering CRISPR/Cas9, their advantages, and 

limitations 
 

 
 

Source: (Liang et al., 2023) 
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APPLICATIONS IN SPECIFIC DISEASES 
 

β-Thalassaemia 

β-Thalassaemia arises from mutations in the HBB gene, 

leading to reduced β-globin synthesis, excess α-globin 

chains, ineffective erythropoiesis, and severe anaemia 

(Finotti et al., 2015; Ribeil et al., 2013). Although allogeneic 

HSCT is curative for some patients, donor limitations 

necessitate alternatives. CRISPR-Cas9 can correct HBB 

mutations or reactivate fetal haemoglobin (HbF) by 

disrupting regulatory regions such as BCL11A (Cavazzana-

Calvo et al., 2010; Finotti et al., 2015). 
 

Sickle Cell Disease (SCD) 

SCD is caused by a single-nucleotide mutation in HBB, 

producing haemoglobin S (HbS). Under hypoxia, HbS 

polymerises, deforming RBCs and causing vaso-occlusion, 

haemolysis, anaemia, and multi-organ damage (Gewin, 

2015; Hoban et al., 2016; Weatherall, 2010). CRISPR-Cas9 

has demonstrated high efficiency in correcting HBB 

mutations in patient-derived iPSCs (Huang et al., 2015; 

Ugalde et al., 2023). Another promising approach targets 

BCL11A to reactivate HbF, though concerns remain 

regarding immune reactions to Cas9 and off-target 

mutations (Fontana et al., 2025; Adashi et al., 2023). 
 

Fanconi Anaemia 

Fanconi anaemia (FA) results from mutations in genes 

involved in the FA/BRCA DNA repair pathway, including 

FANCA, FANCC, and FANCG. It is characterised by 

genomic instability, congenital abnormalities, bone marrow 

failure, and elevated cancer risk (Auerbach, 2009; Soulier, 

2011; Taniguchi & D’Andrea, 2006). Correcting FA 

mutations using iPSC technology has shown promise, but 

efficacy is limited by low homology-directed repair (HDR) 

rates and uncertain long-term safety (Rio et al., 2014; Raya 

et al., 2009). 
 

Thrombocytopenia 

Thrombocytopenia refers to a decrease in platelet count 

caused by inherited or acquired conditions (Drachman, 

2004). Although research remains limited, CRISPR-Cas9 

has successfully converted HPA-1b to HPA-1a in iPSCs, 

improving megakaryocyte viability. Nonetheless, 

challenges persist due to poor differentiation efficiency and 

off-target risks (Zhang et al., 2016). 
 

 

Haemophilia 

Haemophilia A and B result from deficiencies in 

coagulation factors VIII and IX, respectively (Ratnoff & 

Bennett, 1973). Earlier AAV-based gene therapies showed 

promise (High, 2012; McIntosh et al., 2013; Nathwani et al., 

2011). CRISPR-Cas9 has been used to correct chromosomal 

inversions in iPSCs derived from patients with haemophilia 

A, enabling the production of functional endothelial cells 

capable of secreting FVIII (Park et al., 2015). Limitations 

include the complexity of F8 gene structure and potential 

immune responses to Cas9. 
 

Diamond-Blackfan Anaemia (DBA) 

DBA is a rare congenital erythroid aplasia caused by 

mutations in ribosomal protein genes, resulting in 

ribosomal stress and TP53 activation (Dutt et al., 2011; Jaako 

et al., 2011). Current treatments—including glucocorticoids 

and HSCT—carry significant adverse effects (Ball, 2011; 

Vlachos et al., 2001, 2008). CRISPR-Cas9 has demonstrated 

potential in zebrafish models, although editing ribosomal 

genes poses safety risks due to their essential functions 

(Ablain et al., 2015). 
 

CHALLENGES AND LIMITATIONS 

Despite substantial progress, CRISPR-Cas9 faces major 

challenges before routine clinical application. Off-target 

DNA cleavage threatens genomic stability (Schiroli et al., 

2019; Xiao et al., 2024). Delivery challenges persist, 

especially with viral vectors that may provoke immune 

responses (Lu et al., 2022). Ethical concerns related to 

germline editing and equitable access further complicate 

clinical translation (De Sanctis et al., 2023). Additionally, the 

long-term stability of edited HSPCs remains uncertain 

(Chehelgerdi et al., 2024). 
 

Future Prospects 

CRISPR-Cas9 technology offers a highly precise method for 

targeting inherited blood disorders and reactivating fetal 

haemoglobin, holding promise for both ex vivo and in vivo 

therapies (Chehelgerdi et al., 2024; Lu et al., 2022). 

Enhancing delivery systems, reducing off-target activity, 

and establishing robust long-term safety data are essential 

for successful clinical translation (Schiroli et al., 2019; Xiao 

et al., 2024). Ethical considerations, regulatory oversight, 

and equitable access will shape the future of gene therapy 

(De Sanctis et al., 2023; Zheng, 2025; Kolanu, 2024). 
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CONCLUSION 

CRISPR-Cas9 shows strong potential for precise genome 

modification and correction of mutations responsible for 

inherited blood disorders such as β-thalassemia and SCD 

(Chehelgerdi et al., 2024; Lu et al., 2022). Promising results 

have been observed in the restoration of gene function in 

HSPCs and in patient-derived iPSCs (Schiroli et al., 2019; 

Xiao et al., 2024). Significant challenges remain—

particularly off-target effects, delivery barriers, and 

uncertainties surrounding long-term cell stability (De 

Sanctis et al., 2023; Zheng, 2025). Current research focuses 

on improving vectors, expanding clinical trials, and 

developing strategies to minimise adverse effects (Lu et al., 

2022; Xiao et al., 2024). 
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