Orapuh Journal | Journal of Oral & Public Health
Diagnostic performance of the SD Bioline Malaria Ag Pf® rapid diagnostic test for malaria screening among school-aged children in Mbujimayi, Democratic Republic of the Congo
Orap J, 7(1), 2026
PDF

Keywords

Malaria
school-aged children
diagnostic performance

How to Cite

Yamba Mukendi, A., Kabongo-Tshibaka, A., Kalala-Tshituka , N., Ndjibu-Mpoji, F., Lufuluabu Mpemba, A., Ngombo Katende, B., Cindibu Kalonji, F., Cimuanga-Mukanya , A., Likwela Losimba, J., Tshibangu Kabamba, E., & Kayiba-Kalenda, N. (2026). Diagnostic performance of the SD Bioline Malaria Ag Pf® rapid diagnostic test for malaria screening among school-aged children in Mbujimayi, Democratic Republic of the Congo . Orapuh Journal, 7(1), e1409. https://doi.org/10.4314/orapj.v7i1.9

Abstract

Introduction

School-aged children in malaria-endemic regions often harbour asymptomatic and low-density infections, constituting a hidden reservoir that complicates malaria control efforts. Although rapid diagnostic tests (RDTs) provide a practical screening tool, data on their diagnostic accuracy in this population remain limited.

Purpose

This study aimed to assess the diagnostic accuracy of the SD Bioline Malaria Ag Pf® RDT among school-aged children and to generate evidence to support malaria surveillance and control strategies in Mbujimayi.

Methods

A cross-sectional survey was conducted in February 2023 among 494 students aged 5–12 years from two primary schools in Mbujimayi, Democratic Republic of the Congo. Capillary blood samples were collected for thick and thin blood smears and SD Bioline Malaria Ag Pf® testing. Sensitivity, specificity, positive and negative predictive values (PPV and NPV), Cohen’s kappa coefficient, and receiver operating characteristic (ROC) curve analysis were used to evaluate RDT performance relative to microscopy.

Results

The median age of the children was 10 years (range: 4–15 years). The prevalence of malaria was 27.3% (95% CI: 23.5–31.4) by both thick blood smear microscopy and the SD Bioline Malaria Ag Pf® RDT. Plasmodium falciparum accounted for 97.0% of infections. Agreement between the two diagnostic methods was fair (κ = 0.38; p = 0.001). The RDT demonstrated a sensitivity of 57.3% and a specificity of 87.1%, with a PPV of 47.2% and an NPV of 91.1%. The area under the ROC curve was 0.715 (95% CI: 0.663–0.767). The optimal parasite density threshold for detection was 202 parasites/µL, corresponding to a sensitivity of 52% and a specificity of 91%.

Conclusion

Among school-aged children, the SD Bioline Malaria Ag Pf® RDT demonstrated moderate diagnostic performance, reliably detecting moderate-to-high parasitaemia but missing a substantial proportion of low-density infections. Complementary diagnostic approaches may therefore be required to accurately identify malaria infections in this age group.

https://doi.org/10.4314/orapj.v7i1.9
PDF

References

Acquah, F. K., Donu, D., Obboh, E. K., Bredu, D., Mawuli, B., Amponsah, J. A., Quartey, J., & Amoah, L. E. (2021). Diagnostic performance of an ultrasensitive HRP2-based malaria rapid diagnostic test kit used in surveys of afebrile people living in Southern Ghana. Malaria Journal, 20(1), 1–11. https://doi.org/10.1186/s12936-021-03665-7

Ba, H., Ahouidi, A. D., Duffy, C. W., Deh, Y. B., Diedhiou, C., Tandia, A., Diallo, M. Y., Assefa, S., Lô, B. B., Elkory, M. B., & Conway, D. J. (2017). Evaluation du test de diagnostic rapide du paludisme OptiMal-IT® pLDH à la limite de la distribution de Plasmodium falciparum en Mauritanie. Bulletin de La Societe de Pathologie Exotique, 110(1), 31–37. https://doi.org/10.1007/s13149-017-0541-y

Berzosa, P., Lucio, A. De, Barja, M. R., Herrador, Z., González, V., García, L., Martínez, A. F., Morales, M. S., Ncogo, P., Valladares, B., Riloha, M., & Benito, A. (2018). Comparison of three diagnostic methods ( microscopy , RDT , and PCR ) for the detection of malaria parasites in representative samples from Equatorial Guinea. Malaria Journal, 1–12. https://doi.org/10.1186/s12936-018-2481-4

Çorbacıoğlu, Ş. K., & Aksel, G. (2023). Receiver operating characteristic curve analysis in diagnostic accuracy studies: A guide to interpreting the area under the curve value. Turkish Journal of Emergency Medicine, 23(4), 195–198. https://doi.org/10.4103/tjem.tjem_182_23

Djallé, D., Gody, J. C., Moyen, J. M., Tekpa, G., Ipero, J., Madji, N., Breurec, S., & Manirakiza, A. (2014). Performance of ParacheckTM-Pf, SD Bioline malaria Ag-Pf and SD Bioline malaria Ag-Pf/pan for diagnosis of falciparum malaria in the Central African Republic. BMC Infectious Diseases, 14(1). https://doi.org/10.1186/1471-2334-14-109

Gillet, P., Mori, M., Van Esbroeck, M., Van Den Ende, J., & Jacobs, J. (2009). Assessment of the prozone effect in malaria rapid diagnostic tests. Malaria Journal, 8(1), 1–7. https://doi.org/10.1186/1475-2875-8-271

Haberichter, K. L., Johnson, P. C., Chittick, P. J., Millward, P., Robinson-Dunn, B., & Boyanton, B. L. (2017). The Brief Case: False-Positive Rapid Malaria Antigen Test Result in a Returned Traveler. Journal of Clinical Microbiology, 55(8), 2294–2297. https://doi.org/10.1128/JCM.02347-16

Iqbal, J., Siddique, A., Jameel, M., & Hira, P. R. (2004). Persistent Histidine-Rich Protein 2, Parasite Lactate Dehydrogenase, and Panmalarial Antigen Reactivity after Clearance of Plasmodium falciparum Monoinfection. Journal of Clinical Microbiology, 42(9), 4237–4241. https://doi.org/10.1128/JCM.42.9.4237-4241.2004

Isaac Nyiayem Igbawua, Yakubu Boyi Ngwai, David Ishaleku, & Jibril Egwu Owuna. (2024). Prevalence of malaria and comparative diagnostic performance of malaria rapid diagnostic test against microscopy in Nasarawa-west senatorial District, Nasarawa, Nigeria. GSC Advanced Research and Reviews, 18(1), 062–070. https://doi.org/10.30574/gscarr.2024.18.1.0486

Joste, V., Bailly, J., Hubert, V., Pauc, C., Gendrot, M., Guillochon, E., Madamet, M., Thellier, M., Kendjo, E., Argy, N., Pradines, B., Houzé, S., Garabedian, C., Domergue, A., Clauser, S., Agnamey, P., Damiani, C., de Gentile, L., Pihet, M., … Caraux-Paz, P. (2021). Plasmodium ovale wallikeri and P. ovale curtisi Infections and Diagnostic Approaches to Imported Malaria, France, 2013-2018. Emerging Infectious Diseases, 27(2), 372–384. https://doi.org/10.3201/eid2702.202143

Kabbale, K. D., Nsengimaana, B., Semakuba, F. D., Kagurusi, B. A., Mwubaha, C., Wiringilimaana, I., Katairo, T., Kiyaga, S., Mbabazi, M., Gonahasa, S., Kamya, M. R., Tukwasibwe, S., Nsobya, S. L., Asua, V., Jjingo, D., Agaba, B., Maiteki-Sebuguzi, C., Opigo, J., Hilton, K., … Briggs, J. (2025). Field evaluation of the Bioline Malaria Ag P.f/Pan rapid diagnostic test: causes of microscopy discordance and performance in Uganda. Malaria Journal, 24(1), 138. https://doi.org/10.1186/s12936-025-05379-6

Kambou, S. A. E., Millogo, K. S., Sondo, P., Kabore, B., Kouevi, A. F. C., Bouda, I., Rouamba, T., Derra, K., Tahita, M. C., Ilboudo, H., Rouamba, E., Tougri, G., Otienoburu, S. D., Dhorda, M., Bamba, S., Guerin, P. J., & Tinto, H. (2024). Prevalence of asymptomatic parasitaemia among household members of children under seasonal malaria chemoprevention coverage and comparison of the performance of standard rapid diagnostic tests versus ultrasensitive RDT for the detection of asymptomatic pa. Parasitology Research, 123(11), 1–10. https://doi.org/10.1007/s00436-024-08380-1

Kavanaugh, M. J., Azzam, S. E., & Rockabrand, D. M. (2021). Malaria rapid diagnostic tests: Literary review and recommendation for a quality assurance, quality control algorithm. Diagnostics, 11(5). https://doi.org/10.3390/diagnostics11050768

Kayiba, N. K., Nitahara, Y., Tshibangu-Kabamba, E., Mbuyi, D. K., Kabongo-Tshibaka, A., Kalala, N. T., Tshiebue, B. M., Candray-Medina, K. S., Kaku, N., Nakagama, Y., Speybroeck, N., Mumba, D. N., Disashi, G. T., Kaneko, A., & Kido, Y. (2024). Malaria infection among adults residing in a highly endemic region from the Democratic Republic of the Congo. Malaria Journal, 23(1), 1–14. https://doi.org/10.1186/s12936-024-04881-7

Kim, H.-Y. (2017). Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restorative Dentistry & Endodontics, 42(2), 152–155. https://doi.org/10.5395/rde.2017.42.2.152

Ledolter, J., Gramlich, O. W., & Kardon, R. H. (2020). Parametric Statistical Inference for Comparing Means and Variances. Investigative Ophthalmology & Visual Science, 61(8), 25. https://doi.org/10.1167/iovs.61.8.25

Martiáñez-Vendrell, X., Skjefte, M., Sikka, R., & Gupta, H. (2022). Factors Affecting the Performance of HRP2-Based Malaria Rapid Diagnostic Tests. Tropical Medicine and Infectious Disease, 7(10). https://doi.org/10.3390/tropicalmed7100265

McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia Medica, 22(3), 276–282.

Moody, A. (2014). Rapid diagnostic tests for malaria. BMJ (Online), 348(1), 66–78. https://doi.org/10.1136/bmj.g3846

Moussa, R. A., Papa Mze, N., Arreh, H. Y., Hamoud, A. A., Alaleh, K. M., Omar, A. R. Y., Abdi, W. O., Guelleh, S. K., Abdi, A. I. A., Aboubaker, M. H., Basco, L. K., Khaireh, B. A., & Bogreau, H. (2023). Molecular investigation of malaria-infected patients in Djibouti city (2018–2021). Malaria Journal, 22(1), 1–14. https://doi.org/10.1186/s12936-023-04546-x

Mukadi, P., Lejon, V., Barbé, B., Gillet, P., Nyembo, C., Lukuka, A., Likwela, J., Lumbala, C., Mbaruku, J., Veken, W. Vander, Mumba, D., Lutumba, P., Muyembe, J. J., & Jacobs, J. (2016). Performance of microscopy for the diagnosis of malaria and human African trypanosomiasis by diagnostic laboratories in the democratic Republic of the Congo: Results of a nation-wide external quality assessment. PLoS ONE, 11(1), 1–15. https://doi.org/10.1371/journal.pone.0146450

Nankabirwa, J., Brooker, S. J., Clarke, S. E., Fernando, D., Gitonga, C. W., Schellenberg, D., & Greenwood, B. (2014). Malaria in school-age children in Africa: an increasingly important challenge. Tropical Medicine & International Health, 19(11), 1294–1309. https://doi.org/10.1111/tmi.12374

Nankabirwa, J., Wandera, B., Kiwanuka, N., Staedke, S. G., Kamya, M. R., & Brooker, S. J. (2013). Asymptomatic Plasmodium Infection and Cognition among Primary Schoolchildren in a High Malaria Transmission Setting in Uganda. The American Society of Tropical Medicine and Hygiene, 88(6), 1102–1108. https://doi.org/10.4269/ajtmh.12-0633

Ngalame, A. L., Watching, D., Kibu, O. Z., Zeukóo, E. M., & Nsagha, D. S. (2025). Assessment of the diagnostic performance of the SD Bioline Malaria antigen test for the diagnosis of malaria in the Tombel health district, Southwest region of Cameroon. PLoS ONE, 20(3 March), 1–15. https://doi.org/10.1371/journal.pone.0298992

Nundu, S. S., Simpson, S. V., Arima, H., Muyembe, J. J., Mita, T., Ahuka, S., & Yamamoto, T. (2022). It Is Time to Strengthen the Malaria Control Policy of the Democratic Republic of Congo and Include Schools and School-Age Children in Malaria Control Measures. Pathogens, 11(7). https://doi.org/10.3390/pathogens11070729

Ohrt, C., Purnomo, Sutamihardja, M. A., Tang, D., & Kain, K. C. (2002). Impact of Microscopy Error on Estimates of Protective Efficacy in Malaria‐Prevention Trials. The Journal of Infectious Diseases, 186(4), 540–546. https://doi.org/10.1086/341938

OMS. (2014). Techniques de base pour le diagnostic microscopique du paludisme. https://iris.who.int/server/api/core/bitstreams/391850f1-97e3-44d0-aef6-a65e196f8885/content

OMS. (2017). Mise en œuvre des programmes de paludisme pendant la grossesse dans le contexte des recommandations de l’Organisation Mondiale de la Santé (OMS) concernant les soins prénatals pour que la grossesse soit une expérience positive. https://iris.who.int/server/api/core/bitstreams/2ccd6d04-3429-4476-97bc-c9403536431a/content

Orimadegun, A. E., Dada-Adegbola, H. O., Michael, O. S., Adepoju, A. A., Funwei, R. I., Olusola, F. I., Ajayi, I. O. O., Ogunkunle, O. O., Ademowo, O. G., Jegede, A. S., Baba, E., Hamade, P., Webster, J., Chandramohan, D., & Falade, C. O. (2023). SD-Bioline malaria rapid diagnostic test performance and time to become negative after treatment of malaria infection in Southwest Nigerian Children. Annals of African Medicine, 22(4), 470–480. https://doi.org/10.4103/aam.aam_220_21

Parr, J. B., Verity, R., Doctor, S. M., Janko, M., Carey-Ewend, K., Turman, B. J., Keeler, C., Slater, H. C., Whitesell, A. N., Mwandagalirwa, K., Ghani, A. C., Likwela, J. L., Tshefu, A. K., Emch, M., Juliano, J. J., & Meshnick, S. R. (2017). Pfhrp2 -Deleted Plasmodium falciparum Parasites in the Democratic Republic of the Congo: A National Cross-sectional Survey. Journal of Infectious Diseases, 216(1), 36–44. https://doi.org/10.1093/infdis/jiw538

PNLP. (2022). Rapport annuel des activités de lutte contre le paludisme en RDC. https://pnlprdc.org/wp-content/uploads/2024/04/Rapport-annuel-2022-des-activites-de-lutte-contre-le-Paludisme-1.pdf

PNLP. (2023). Rapport annuel des activités de lutte contre le paludisme en RDC. https://pnlprdc.org/wp-content/uploads/2024/11/Rapport-annuel-2023-des-activites-de-lutte-contre-le-Paludisme.pdf

Sagna, A. B., Gebre, Y., Vera-Arias, C. A., Traoré, D. F., Tchekoi, B. N., Assi, S. B., Koffi, A. A., Rogier, C., Remoue, F., & Koepfli, C. (2024). High prevalence of asymptomatic and subpatent Plasmodium falciparum infections but no histidine-rich protein 2 gene deletion in Bouaké, Côte d’Ivoire. Scientific Reports, 14(1), 1–11. https://doi.org/10.1038/s41598-024-70215-x

Sarpong, N., Owusu-Dabo, E., Kreuels, B., Fobil, J. N., Segbaya, S., Amoyaw, F., Hahn, A., Kruppa, T., & May, J. (2015). Prevalence of malaria parasitaemia in school children from two districts of Ghana earmarked for indoor residual spraying: a cross-sectional study. Malaria Journal, 14(1), 260. https://doi.org/10.1186/s12936-015-0772-6

Sayang, C., Soula, G., Tahar, R., Basco, L. K., Gazin, P., Moyou-Somo, R., & Delmont, J. (2009). Use of a histidine-rich protein 2-based rapid diagnostic test for malaria by health personnel during routine consultation of febrile outpatients in a peripheral health facility in Yaoundé, Cameroon. American Journal of Tropical Medicine and Hygiene, 81(2), 343–347. https://doi.org/10.4269/ajtmh.2009.81.343

Snow, R., & Marsh, K. (2002). The consequences of reducing transmission of Plasmodium falciparum in Africa. In Advances in Parasitology Volume 52 (pp. 235–264). Elsevier. https://doi.org/10.1016/S0065-308X(02)52013-3

Sorgho, H., Douamba, K. R. D., Valéa, I., & Tinto, H. (2015). Performance diagnostique de SD Bioline malaria antigen P . f ® pour la détection des infections palustres chez la femme enceinte au troisième trimestre de grossesse au Burkina Faso. Science et Technique, Sciences de La Santé, 40(2), 81–87.

Srivastava, B., Sharma, S., Ahmed, N., Kumari, P., Gahtori, R., Sinha, S., Kumar, S., Sanalkumar, M., Mahale, P., Swarnkar, D., & Anvikar, A. R. (2023). Quality assurance of malaria rapid diagnostic tests: An aid in malaria elimination. The Indian Journal of Medical Research, 157(1), 23–29. https://doi.org/10.4103/ijmr.ijmr_2262_21

Staedke, S. G., & Maiteki-Sebuguzi, C. (2023). Targeting malaria control to schoolchildren. The Lancet Global Health, 11(8), e1156–e1157. https://doi.org/10.1016/S2214-109X(23)00238-3

Tinto, H., Sombié, O., Valea, I., Ferdinand, L., Sandrine, Y., Lompo, P., Tahita, M. C., Kazienga, A., Ouédraogo, S., Sorgho, H., Maaike, D. K., & Ravinetto, R. (2015). Field evaluation of SD Bioline Malaria Antigen P.f® for Plasmodium falciparum malaria diagnosis in Nanoro, Burkina Faso. African Journal of Parasitology Research, 2(11), 161–165.

Toma, I. A. (2018). Kasai: The forgotten province of DRC – gender assessment. https://doi.org/10.21201/2017.1657

Walldorf, J. A., Cohee, L. M., Coalson, J. E., Bauleni, A., Nkanaunena, K., Kapito-Tembo, A., Seydel, K. B., Ali, D., Mathanga, D., Taylor, T. E., Valim, C., & Laufer, M. K. (2015). School-Age Children Are a Reservoir of Malaria Infection in Malawi. PLOS ONE, 10(7), e0134061. https://doi.org/10.1371/journal.pone.0134061

WHO. (2020). Protocole type pour la surveillance des délétions des gènes Pfhrp2 et Pfhrp3. https://iris.who.int/server/api/core/bitstreams/e34f9186-49f0-45cc-bdca-5e21327d26cb/content

WHO. (2023). World Malaria Report 2023. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023

WHO. (2024). World malaria World report 2024. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2024

Yimam, Y., Mohebali, M., & Afshar, M. J. A. (2022). Comparison of diagnostic performance between conventional and ultrasensitive rapid diagnostic tests for diagnosis of malaria: A systematic review and meta-analysis. PLoS ONE, 17(2 February), 97–100. https://doi.org/10.1371/journal.pone.0263770

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.