Orapuh Journal | Journal of Oral & Public Health
Chemical composition, antioxidant, and anti-inflammatory activities of essential oils from Cymbopogon citratus (DC.) Stapf and Chrysopogon zizanioides (L.) Roberty cultivated in Kisangani, Northeastern Region of the Democratic Republic of the Congo
Orap J, 6(11), 2025
PDF

Keywords

Cymbopogon citratus
Chrysopogon zizanioides
essential oil
antioxidant activity
anti-inflammatory activity
Kisangani

How to Cite

NDEZU ANGIRIO, R., Mbinze, J. K., K. Tafokeu Taguimjeu , P.-L., Mouithys-Mickalad, A., Gregoire, M., Thierry, F., Mankulu Kakumba, J., Ive Kitenge, D., Genva, M., Kadima Ntokamunda, J., Fauconnier, M.-L., & MARINI DJANG’EING’A, R. (2025). Chemical composition, antioxidant, and anti-inflammatory activities of essential oils from Cymbopogon citratus (DC.) Stapf and Chrysopogon zizanioides (L.) Roberty cultivated in Kisangani, Northeastern Region of the Democratic Republic of the Congo . Orapuh Journal, 6(11), e1306. https://doi.org/10.4314/orapj.v6i11.106

Abstract

Introduction

Essential oils are valuable natural products known for their bioactive properties. Cymbopogon citratus (lemongrass) and Chrysopogon zizanioides (vetiver) are aromatic plants cultivated in Kisangani, whose chemical composition and biological activities warrant investigation.

Purpose

This experimental study aimed to determine the chemical composition and to evaluate the in vitro antioxidant and anti-inflammatory properties of essential oils extracted from Cymbopogon citratus (DC.) Stapf and Chrysopogon zizanioides (L.) Roberty cultivated in Kisangani.

Methods

Leaves of lemongrass and roots of vetiver were collected from the Mavaolo concession and hydro-distilled to obtain essential oils (EOs). The extraction yields were 0.11 ± 0.01% for lemongrass and 1.40 ± 0.67% for vetiver, with densities of 0.88 µg/mL and 1.05 µg/mL, respectively. Gas Chromatography–Mass Spectrometry (GC–MS) analysis revealed 17 and 24 peaks in the two species, of which 100% and 82.32% were identified, respectively.

Results

C. citratus oil consisted mainly of oxygenated monoterpenes (69.93%), primarily citral (36.64%) and nerol aldehyde (28.85%), while C. zizanioides oil contained predominantly oxygenated sesquiterpenes (87.67%), including khusimol (28.52%) and vetivenic acid (14.01%). Lemongrass essential oil exhibited strong antioxidant and anti-inflammatory activities, whereas vetiver oil showed weak antioxidant but strong anti-inflammatory properties compared with α-tocopherol used as a reference.

Conclusion

The findings indicate that C. citratus and C. zizanioides cultivated in Kisangani contain bioactive constituents of commercial potential. It is recommended that further cultivation studies be conducted to optimise essential oil yield.

https://doi.org/10.4314/orapj.v6i11.106
PDF

References

Amoah, A. S., Pestov, N. B., Korneenko, T. V., Prokhorenko, I. A., Kurakin, G. F., & Barlev, N. A. (2024). Lipoxygenases at the intersection of infection and carcinogenesis. International Journal of Molecular Sciences, 25(7), 3961. https://doi.org/10.3390/ijms25073961

Ana, C., Souza, S., Laís, K., Thais, S., Queiroz, B., Eduardo, S., Clélia, A., Hiruma, L., Isabel, O., Gaivão, M., & Edson, L. (2019). Citral presents cytotoxic and genotoxic effects in human cultured cells. Drug and Chemical Toxicology, 43(4), 435–440. https://doi.org/10.1080/01480545.2019.1585445

Attokaran, M. (2011). Natural food flavors and colorants (pp. 333–335). Wiley. https://doi.org/10.1002/978047095915

Avosch, O. (2015). Cymbopogon species: Ethnopharmacology, phytochemistry and the pharmacological importance. Molecules, 20, 7438–7453. https://doi.org/10.3390/molecules20047438

Bansod, S., & Rai, M. (2008). Antifungal activity of essential oils from Indian medicinal plants against human pathogenic Aspergillus fumigatus and A. niger. World Journal of Medical Sciences, 3(2), 88–92.

Ben-Moussa, M. T., Khaled, K., Hassina, H., Samia, L., & Youcef, H. (2020). Composition chimique, activité antimicrobienne et antioxydante de l’huile essentielle de Brocchia cinerea Vis. d’Algérie. Batna Journal of Medical Sciences, 7(2), 122–128.

Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200. https://doi.org/10.1038/1811199a0

Borive, A., Frederich, M., Jansen, O., Memvanga, B., Bonnet, O., Batina, A., Mouithys, A., Allison, L., & Marini, R. (2025). Phytochemical characterization of Hibiscus tiliaceus L. leaves and evaluation of their antisickling, antioxidant, and anti-inflammatory activities. Molecules, 30, 1765. https://doi.org/10.3390/molecules30081765

Bourgou, S., Rahali, F. Z., Ourghemmi, I., & Saïdani Tounsi, M. (2012). Changes of peel essential oil composition of four Tunisian citrus during fruit maturation. The Scientific World Journal, 2012, 528593. https://doi.org/10.1100/2012/528593

Bourkhiss, M., Hnach, M., Paolini, J., Costa, J., Farah, A., & Satrani, B. (2010). Propriétés antioxydantes et anti-inflammatoires des huiles essentielles des différentes parties de Tetraclinis articulata (Vahl) Masters du Maroc. Bulletin de la Société Royale des Sciences de Liège, 79, 141–154.

Champagnat, P., Figueredo, G., Chalchat, J., Carnat, A., & Bessiere, J. (2006). A study on the composition of commercial Vetiveria zizanioides oils from different geographical origins. Journal of Essential Oil Research, 18(4), 416–422.

Dinarello, C. A. (2010). Anti-inflammatory agents: Present and future. Cell, 140(6), 935–950. https://doi.org/10.1016/j.cell.2010.02.043

Djousse, B. M., Nasse, F., Ngoune, H., Djoukeng, G., Leonel, W., Nono, H., Sogang, S., & Tangka, J. K. (2022). Cameroon Journal of Biological and Biochemical Sciences, 30(2), 121–133. http://www.camjournals.com

Figueirinha, A., Cruz, M., Francisco, V., Lopes, M., & Batista, M. (2010). Anti-inflammatory activity of Cymbopogon citratus leaf infusion in lipopolysaccharide-stimulated dendritic cells: Contribution of the polyphenols. Journal of Medicinal Food, 13(3), 681–690.

Golmakani, M., & Moayyedi, M. (2015). Comparison of heat and mass transfer of different microwave-assisted extraction methods of essential oil from Citrus limon (Lisbon variety) peel. Food Science & Nutrition, 3(6), 506–518. https://doi.org/10.1002/fsn3.234

Hammam, K., Amer, A., & Noreldin, T. (2019). Vetiver (Vetiveria zizanioides L.) yield and its water use efficiency affected by different plant populations under reclaimed soil conditions. Journal of Medicinal Plant Research, 7(5), 126–134.

Hartatie, I., Prihartini, W., Widodo, A., & Wahyudi, A. (2019). Bioactive compounds of lemongrass (Cymbopogon citratus) essential oil from different plant parts and distillation methods as natural antioxidants in broiler chicken meat. IOP Conference Series: Materials Science and Engineering, 532(1), 012018. https://doi.org/10.1088/1757-899X/532/1/012018

Hasani-Ranjbar, S., Neda, N., Bagher, L., & Mohammad, A. (2009). A systematic review of the efficacy and safety of herbal medicines used in the treatment of obesity. World Journal of Gastroenterology, 15(25), 3073–3085. https://doi.org/10.3748/wjg.15.3073

Himed, L., Merniz, S., Monteagudo-Olivan, R., Barkat, M., & Coronas, J. (2019). Antioxidant activity of the essential oil of Citrus limon before and after its encapsulation in amorphous SiO₂. Scientific African, 6, e00181. https://doi.org/10.1016/j.sciaf.2019.e00181

Kadarohman, A., Dwiyanti, G., & Kadarusman, E. (2014). Quality and chemical composition of organic and non-organic vetiver oil. Indonesian Journal of Chemistry, 14(1), 43–50. https://doi.org/10.22146/ijc.21266

Kanko, C., Sawaliho, B. E., Kone, S., Koukoua, G., & N’Guessan, Y. T. (2004). Étude des propriétés physico-chimiques des huiles essentielles de Lippia multiflora, Cymbopogon citratus, Cymbopogon nardus, Cymbopogon giganteus. Comptes Rendus Chimie, 7(9–10), 1039–1042. https://doi.org/10.1016/j.crci.2003.12.030

Khasanah, L., Ariviani, S., Purwanto, E., & Praseptiangga, D. (2025). Chemical composition and citral content of essential oil of lemongrass (Cymbopogon citratus (DC.) Stapf) leaf waste prepared with various production methods. Journal of Agriculture and Food Research, 19, 101570. https://doi.org/10.1016/j.jafr.2024.101570

Kim, H., Chen, F., Wang, X., Chung, H., & Jin, Z. (2005). Evaluation of antioxidant activity of vetiver (Vetiveria zizanioides L.) oil and identification of its antioxidant constituents. Journal of Agricultural and Food Chemistry, 53(20), 7691–7695. https://doi.org/10.1021/jf050833e

Lunz, K., & Stappen, I. (2021). Back to the roots: Overview of the chemical composition and bioactivity of selected essential oils from roots. Molecules, 26(10), 3155. https://doi.org/10.3390/molecules26103155

Miora, R. (2018). Caractérisation chimique et biologique de trois huiles essentielles répulsives issues de la biodiversité régionale contre l’alphavirus Ross River [Doctoral thesis, Université de la Réunion]. HAL Thèses. https://theses.hal.science/tel-01910886v1

Oliveira, T., Vieira, T., Esperandim, V., Martins, C., Magalhães, L., Miranda, M., & Crotti, A. (2022). Antibacterial, antiparasitic, and cytotoxic activities of chemically characterized essential oil of Chrysopogon zizanioides roots. Pharmaceuticals, 15(8), 967. https://doi.org/10.3390/ph15080967

Pandey, A., & Tiwari, S. (2024). A review on chemical composition, oil quality, and bioactivity of vetiver essential oil. Indian Journal of Pharmaceutical Sciences, 86(4). https://www.ijpsonline.com/articles/a-review-on-chemical-composition-oil-quality-and-bioactivity-of-vetiver-essential-oil-5597.html

Ram, M., Ram, D., & Roy, S. K. (2003). Influence of organic mulching on fertilizer nitrogen use efficiency and herb and essential oil yields in geranium (Pelargonium graveolens). Bioresource Technology, 87(3), 273–278. https://doi.org/10.1016/S0960-8524(02)00234-5

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Samaan, M., Ebid, M., & Thabet, M. (2022). GC-MS analysis, antioxidant capacity, and antimicrobial activity of Vetiveria zizanioides essential oil cultivated in northern Egypt. Journal of Plant Production, 13(9), 699–704. https://doi.org/10.21608/jpp.2022.147290.1138

Silou, T., Bikanga, R., Nsikabaka, S., Nombault, L., Mavoungou, C., Figueredo, G., & Chalchat, J. C. (2017). Aromatic plants of the Plateau des Cataractes (Congo Basin): Characterization of the chemotype of Cymbopogon nardus (L.) Rendle essential oil acclimated in Congo-Brazzaville. Biotechnologie, Agronomie, Société et Environnement, 21(2). https://doi.org/10.25518/1780-4507.13727

Subhadradevi, V., Asokkumar, K., Umamaheswari, M., Sivashanmugam, A., & Sankaranand, R. (2010). In vitro antioxidant activity of Vetiveria zizanioides root extract. Tanzania Journal of Health Research, 12(4), 265–271. https://doi.org/10.4314/thrb.v12i4.59314

Taguimjeu, P. L. K. T., Fongang, Y. S. F., Genva, M., Shinyuy, L. M., Held, J., Frederich, M., Ngouela, S. A., & Fauconnier, M.-L. (2025). Antiplasmodial activity of a new chemotype of Croton sylvaticus Hochst. ex C. Krauss essential oil. International Journal of Molecular Sciences, 26(2), 858. https://doi.org/10.3390/ijms26020858

Tchoumbougnang, F., Dongmo, P. M., Sameza, M. L., Mbanjo, E. G., Fotso, G. B., Zollo, P. H., & Menut, C. (2009). Larvicidal activity on Anopheles gambiae Giles and chemical composition of essential oils extracted from four plants cultivated in Cameroon. Biotechnology, Agronomy, Society and Environment, 13(1), 77–84.

Vangu, P. G., Mobambo, K. N., Omondi, B. A., & Staver, C. (2023). Evaluation des performances du plantain en systèmes de cultures associées pérennes en zone savanicole au Kongo central en République Démocratique du Congo. International Journal of Biological and Chemical Sciences, 17(4), 1443–1455. http://www.ifgdg.org

Vera, F., Gustavo, C., Figueirinha, A., Carla, M., Paulo, P., Bruno, M., Lopes, M., Carmen, G., Cruz, M., & Batista, M. (2013). Anti-inflammatory activity of Cymbopogon citratus leaf infusion via inhibition of the proteasome pathway and nuclear factor-κB: Contribution of chlorogenic acid. Journal of Ethnopharmacology, 148(1), 126–134. https://doi.org/10.1016/j.jep.2013.03.077

Wahyu, W., Andani, P., Hamzah, R., Seila, A., Ervi, A., Hanna, S., Dwi, D., Hayatun, N., & Annisa, A. (2017). Antioxidant and antiaging assays of Hibiscus sabdariffa extract and its compounds. Journal of the Korean Society for Applied Biological Chemistry. https://synapse.koreamed.org/articles/1060665

Wannissorn, B., Jarikasem, S., Siriwangchai, T., & Thubthimthed, S. (2005). Antibacterial properties of essential oils from Thai medicinal plants. Fitoterapia, 76(2), 233–236. https://doi.org/10.1016/j.fitote.2004.11.017

Yanto, E., Agustian, E., & Sulaswatty, A. (2016). Simple purification of vetiver oil by multiglass plate system for quality improvement. Indonesian Journal of Applied Chemistry, 18(2), 106–124. https://doi.org/10.14203/jkti.v18i02.86

Zahoor, S., Shahid, S., & Fatima, U. (2018). Review of the pharmacological activities of Vetiveria zizanoides (Linn.) Nash. Journal of Basic and Applied Sciences, 14, 235–238. https://doi.org/10.6000/1927-5129.2018.14.36

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.